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In the current issue of the journal, Wienke et al. have consid-
ered bivariate (or multivariate) survival modeling in presence
of cure fraction, a problem that was motivated in the arti-
cle “A Bivariate for Modeling Cure-Mizture Approach Familial
Association in Diseases” (Chatterjee and Shih, 2001). In the
discussion, the authors stated that their work extended our
original approach in two ways:

® Use of the more flexible correlated gamma-frailty model,
and

e direct estimation based on maximum-likelihood method
instead of our proposed two-stage estimation.

Moreover, the authors argued that the application of the
methodology to their twin data set was more appropriate as
an illustrative example than the Washington Ashkenazi Study
family data we used. In what follows, we will first comment
on the above specific issues.

Correlated Gamma Frailty Model

In our original article, we proposed the methodology in the
very general setting of copula model (Genest and Mackay,
1986; Marshall and Olkin, 1988). We illustrated the applica-
tion of the methodology using three specific distribution of
the general class, namely Clayton’s (1978), Frank’s (1979),
and Stable family (Hougaard, 1986). It is true that all of
these three models correspond to an underlying shared frailty
model. The class of Copula models, however, are much more
general and can include correlated frailty models. In fact, the
correlated frailty model the authors proposed to use as an
extension of our methodology is a special case of the copula
model with the copula function given by

Clu,v) = u' o'~ (u""2 +0 7 - 1)_7’% (1)

Thus, all the inferential methods we proposed in our orig-
inal article will be also applicable to this correlated frailty
model.

Two-Step vs. One-Step Estimation Method

We recommended two-stage estimation, not because we were
not able to do one-step MLE for the parametric model, but
for the sake of robustness and flexibility. The quasi-likelihood
we defined as L, in equation (3) of Chatterjee and Shih (2001)
is, in fact, the actual likelihood for bivariate data. In a com-
pletely parametric problem, it is straightforward to maximize
this likelihood to obtain the parameter estimates. We, how-
ever, based on the reasons described below, would like to
consider use of semiparametric model that allows completely
unspecified or nonparametric marginal survivor functions.

In general, in analysis of clustered data when one wants
to fit and compare different parametric correlation models,
it is often recommended that the mean structure of the data
(corresponding to marginal distributions) should be modelled
as elaborately as possible (see, e.g., Diggle, Liang, and Zeger,
1994, Section 5.3.1)—if possible nonparametrically, so that
the correlation is not confounded with underspecification of
the mean model. In our two-stage estimation method, we can
easily estimate the marginal distributions nonparametrically
at stage one. At the second stage, we assess and compare ade-
quateness of different parametric correlation models with the
fixed marginal distribution estimated from stage one. Thus,
the two-step procedure gives a fairly simple method for fit-
ting the appealing semiparametric model that allows non-
parametric marginal distributions and parametric correlation
structure.

In the context of cure model, it may be even more im-
portant to consider a nonparametric approach for estimation
of the marginal distribution. We note that cure modelling
is essentially a latent variable approach and that whether a
subject is “cured” or not is never directly observable, due
to censoring. If, in truth, the hypothesized “cured” popula-
tion does not exist, the cure model faces lack of identifiabil-
ity and interpretation. Thus, before considering a cure mod-
elling approach, some exploration of the data is needed to
test for evidence in the data that would suggest presence of
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“cured” population. Maller and Zhou (1992, 1995) suggested
an informal and formal method for testing for presence of
“cured” individuals, based on the degree of the leveling of
the nonparametric Kaplan-Meier incidence curve. Informally
speaking, the basic idea behind this approach is that existence
of sufficient follow-up without event, after the last event ob-
served in the data, is an indication of presence of “cured” sub-
jects in the data. In this case, the value at which the Kaplan-
Meier estimator levels off after the last event can be taken as
a reliable measure of the cure fraction. In a parametric ap-
proach, although allowing for a cure parameter could give a
better fit of the data with an estimate of ¢ (cure fraction) >
0, one may not be able to distinguish the situation whether
the better fit is due to the fact that there is a truly “cured”
population or is it because of the lack of fit of the paramet-
ric survival model. Once the presence of cured population
has been established based on a nonparametric approach, if
suitable, one can consider a parametric specification for the
marginal survivor function for the susceptible (not cured) sub-
jects. In the application involving the Washington Ashkenazi
Study in Chatterjee and Shih (2001), for example, we found
a Weibull model gave a very good fit to the marginal risk of
breast cancer among the susceptible subjects in this data (see
Chatterjee and Shih, 2001, Figure 1).

Data Application

The authors considered an application of the proposed
methodology using breast cancer data from Swedish twin reg-
istry data of twins. We feel the authors have not made full
use of this rich data set. First, a nonparametric Kaplan-Meier
curve (similar to Figure 1 in Chatterjee and Shih, 2001) for
breast cancer incidence in this data would have been very
informative. As we discussed above, such a curve could give
readers a much better sense of whether the cure modelling
approach is appropriate for this data. In our analysis of the
Washington Ashkenazi data, we found that the oldest inci-
dence had occurred at age 91, after which the Kaplan-Meier
curve leveled off. Between age 91 and the oldest follow-up age
of 103, there were 178 subjects, with an average follow-up
of about age 94.3 years, who experienced no breast cancer
event. Presence of such a significant number of subjects who
were followed until old age without any breast cancer event
gave us some indication of “insusceptible” individuals in this
population.

A key finding of our analysis of breast cancer data was that,
after accounting for possibility of correlation between suscep-
tibilities (cure probabilities) of pairs of relatives, we observed
only a modest association between their age-at-onset of the
disease. We observed that when the possibility of correlation
between susceptibilities of two relatives was not allowed, the
correlation between the age-at-onset of the relatives seemed
much stronger, as it absorbed the correlation between the
susceptibilities. In light of our finding, it would have been
interesting if the authors had reported the estimate and the
confidence interval of the pairwise odds ratio between the sus-
ceptibility status of two relatives, defined as 7 in Chatterjee
and Shih (2001). The authors only noted that the model that
allowed for such correlation did not significantly fit better
than the model that assumed independence.

As the authors did not interpret the results of their applica-
tion (Chatterjee and Shih, 2001, Table 1}, a number of issues
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remain unclear. First, what do the authors gain by consider-
ing the more complex two-parameter correlated frailty model?
Does this model give a better fit than the one-parameter
shared frailty mode]l we considered? When the possibility
of cure fractions is allowed, why is the correlation between
monozygotic twins exactly 1.07 Is this a constraint? What is
the heuristic explanation that the estimate of the parameter
p is so sensitive to whether a cure fraction is allowed in the
model or not?

Concluding Remarks

In summary, our original article (Chatterjee and Shih, 2001)
and the current article by Wienke et al. both demon-
strate that, for analyzing correlation in the survival analysis
framework, it can be important to account for presence of
“cured/insusceptible/immune” subjects, if such a population
truly exists. The presence of such a population cannot be di-
rectly tested, as cure status of subjects is unobservable, due
to censoring. For identifiability and interpretation of parame-
ters, however, it is important to first examine if data provide
some evidence about presence of a “cured” population. In a
parametric survival analysis setting, superior fit of a model
that allows for cure parameters may not necessarily indicate
presence of “cured” subjects. Nonparametric methods, such
as those suggested by Maller and Zhou (1992, 1995), should
be used to examine if there is empirical evidence in the data
of “cured” subjects. If the data support evidence of cured
subjects, then a cure modelling approach can provide impor-
tant insight in the context of both univariate and multivariate
survival analysis.
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